On simulation of continuous determinantal point processes
نویسندگان
چکیده
Abstract We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms in several important special cases as well detail certain types of conditional can be carried out. Importantly we show speed up widely used Fourier based projection DPPs, which arise approximations more general DPPs. The are implemented published open source software.
منابع مشابه
Approximate Inference in Continuous Determinantal Point Processes
Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the defining kernel matrix. Recently, there has been growing interest in usi...
متن کاملNotes on Determinantal Point Processes
In these notes we review the main concepts about Determinantal Point Processes. Determinantal point processes are of considerable current interest in Probability theory and Mathematical Physics. They were first introduced by Macchi ([8]) and they arise naturally in Random Matrix theory, non-intersecting paths, certain combinatorial and stochastic growth models and representation theory of large...
متن کاملMarkov Determinantal Point Processes
A determinantal point process (DPP) is a random process useful for modeling the combinatorial problem of subset selection. In particular, DPPs encourage a random subset Y to contain a diverse set of items selected from a base set Y . For example, we might use a DPP to display a set of news headlines that are relevant to a user’s interests while covering a variety of topics. Suppose, however, th...
متن کاملStructured Determinantal Point Processes
We present a novel probabilistic model for distributions over sets of structures— for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point ...
متن کاملLearning Determinantal Point Processes
Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs other tractable algorithms for exact inference, including computing marginal probabilities and sampling; however, an important open question has been how to learn a DPP from labeled tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2023
ISSN: ['0960-3174', '1573-1375']
DOI: https://doi.org/10.1007/s11222-023-10272-w